Correction: Increased expression of SKP2 is an independent predictor of locoregional recurrence in cervical cancer via promoting DNA-damage response after irradiation

نویسندگان

  • Hung-Chun Fu
  • Yi-Chien Yang
  • Yun-Ju Chen
  • Hao Lin
  • Yu-Che Ou
  • Chan-Chao Chang Chien
  • Eng-Yen Huang
  • Hsuan-Ying Huang
  • Jui Lan
  • Hsi-Ping Chi
  • Ko-En Huang
  • Hong-Yo Kang
چکیده

Although radiation therapy was known to be effective to cervical cancer, loco-regional recurrences are frequently found in patients. We aimed to identify a molecular marker predicting the response of cervical cancer to radiotherapy. We included the patients (n = 149) with cervical cancer who had undergone radiotherapy from 2004 to 2006. Tumor samples were collected to examine the association between the expression of S-phase kinase-associated protein 2 (SKP2) and prognosis in cervical cancer. We found higher expression of SKP2 associated with recurrence (HRs: 2.52, p < 0.001), death (HRs: 2.01, p < 0.001) and higher locoregional recurrence rate (HRs: 3.76, p < 0.001). Cervical cancer cell lines with higher expression of SKP2 showed higher colony formation, cell survival rate and fewer DNA damages after irradiation. SKP2-C25, an inhibitor for SKP2 activity, dose-dependently decreased cell viability after irradiation and knockdown of SKP2 impaired DNA-damage response and sensitized the cervical cancer cells to irradiation. Our data showed the SKP2 represents a promising tool to identify patients with cervical cancer who have a higher risk of locoregional recurrence after radiotherapy. Targeting SKP2 may serve as a potential radiosensitizer for developing effective therapeutic strategies against cervical cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay

Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...

متن کامل

Sperm DNA damage in mice irradiated with various doses of X-rays alone or in combination with actinomycin D or bleomycin sulfate: an in vivo study

Background: DNA damage in male germ cells due to exposure to environmental and manmade physico-chemical genotoxic agents is considered as the main cause of male infertility. The aim of this study was to evaluate the effects of combined modalities (radiotherapy and chemotherapy) routinely used for cancer treatment on mouse sperm chromatin in vivo. Materials and Methods: Forty-eight mice were div...

متن کامل

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

Association of Tissue Selenium Level and p53 Expression in Breast Cancer

Background and Objective: Breast cancer is the most commonly diagnosed cancer in women worldwide, which alone accounts for 30% of all new cancer cases in women. The development of cancer is a multistep process.  The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of stimuli such as Oxidative stress that is known to cause DNA damag...

متن کامل

Effects of gamma radiation on adipose-derived mesenchymal stem cells of human breast tissue

Background: During radiation therapy, stromal cells surrounding the tumor (e.g mesenchymal stem cells) may affect the treatment outcomes. We aimed to investigate the effects of gamma radiation on the mRNA expression of cytokines, DNA damage and population doubling time (PDT) of adipose-derived mesenchymal stem cells (ASCs). Material and methods: ASCs were enzymatically extracted from breast tis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016